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Under the auspices of this contract, we have attempted to achieve some
genuine understanding of diusion limited aggregation (DLA), the paradigm N
model for dynamical mechanisms of disorderly growth processes [1-10]. We I -cc ,

found that while the growth probabilities for the tips of the DLA structure do
scale in the conventional fashion, there is evidence that the growth probabilities
of the fjords do not scale. Does this competition between one part of DLA that
does scale, and another that does not, underlie many of the unusual properties
of this model?

Statement A per telecon
Dr. Mike Shlesinger ONR/Code 1112

1. Introduction Arlington, VA 22217-5000

NWW 4/30192

We will organize the presentation around three questions:
Question 1: "What is DLA .F"
Question 2: "Why are we interestedF"
Question 3: "What did woe actually doF"

2. First Question: "What is Diffusion-Limited
Aggregation?"

Like many models in statistical mechanics, the rule defining DLA is simple [11].
At time 1, we place in the center of a computer screen a white pixel, and release
a random walk from a large circle surrounding the white pixel (Fig. la). The
four perimeter sites have an equal a priori probability pi to be stepped on by
the random walk; accordingly we write

pi- = (i = I,....,4). (1)

The rule is that the random walker sticks irreversibly-thereby forming a dus-
ter of mass M = 2. There are N = 6 possible sites, henceforth called grwth
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sites (Fig. ib), but now the probabilities are not all identical: each of the growth
sites of the two tips has growth probability Pm. 0.22, while each of the four
growth sites on the sides has growth probability pmi. - 0.14. Since a side on
the tip is 50o more likely to grow than a site on the sides, the next site is more
likely to be added to the tip-it is like capitalism in that "the rich get richer."
One of the main features of our approach to DLA is that instead of focusing on
the tips who are "getting richer", we can focus on the fjords who are "getting
poorer"-which is perhaps more familiar to physicists who all know the feeling
that "once you get behind you stay behind!"

-Fjord'

0.25 0 ,14 10.14

025.25 5 'Tip-- 0.22 O l 1 0.22

050.14 10.14

(a) t=1 (b) t=2

Fig. 1. (a) Square lattice DLA at time t = 1, showing the four growth sites, each with growth
probability pi = 1/4. (b) DLA at time t = 2, with 6 growth sites, and their corresponding
growth probabilities pi.

Just because the third particle is more likely to stick at the tip does not
mean that the next particle will stick on the tip. Indeed, the most that one
can say about the cluster is to specify the growth site probability distribution
(GSPD)-i.e., the set of numbers,

{P,} i= 1...N,, (2)

where pi is the probability that perimeter site ("growth site") i is the next to
grow, and N. is the total number of perimeter sites (N. = 4,6 for the cases
M = 1,2 shown in Figs. la and lb respectively). The recognition that the set
of {pi} gives us essentially the maximum amount of information we can have
about the system is connected to the fact that tremendous attention has been
paid to these pi-and to the analogs of the pi in various closely-related systems
[12-20].

If the DLA growth rule is simply iterated , then we obtain a large cluster
characterized by a range of growth probabilities that spans several orders of
magnitude-from the tips to the fjords. Figure 2 shows such a large cluster,
where each pixel is colored according to the time it was added to the aggregate.
From the fact that the "last to arrive" particles (green pixels) are never found
to be adjacent to the "first to arrive" particles (white pixels), we conclude that
the pi for the growth sites on the tips must be vastly larger than the pi for the
growth sites in the fjords.
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Fig. 2. Large DLA cluster on a square lattice. Each cluster site is color-coded according to
the time which the site joined the cluster. Courtesy of P. Meakin.

3. Second Question: "Why Study DLA?"

There are almost always two reasons why one finds a given model interesting,
and hence there are generically two distinct answers to this question.

A. Answer One: "There Are Experimental Realizations"

Today, there are roughly of order 102 systems in nature for which DLA may
be relevant [21-24]. Indeed, it seems that possibly DLA captures the essential
physics of a typical dynamic growth process that can be related to the Laplace
Equation (with appropriate boundary conditions).

First is the fact that aggregation phenomena based on random walkers
leads to a Laplace equation for the probability H(r, t) that a walker is at
position r and time t [25]. More surprising, however, is the vast range of phe-
nomena [21-24] that at first sight seem to have nothing to do with random
walkers. These include fluid-fluid displacement phenomena ("viscous fingers"),
for which the pressure P at every point satisfies a Laplace equation V 2 P = 0
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Fig. 3. Typical retinal neuron and its fractal analysis. From Ref. [36].

[26-28]. Similarly, dielectric breakdown phenomena [29], chemical dissolution
[30], electrodeposition [31], and a host of other displacement phenomena (in-
cluding even dendritic crystal growth [32] and snowflake growth [33]) may be
members of a suitably-defined DLA universality class.

Recently, several phenomena of biological interest have attracted the atten-
tion of DLA afficionados. These include the growth of bacterial colonies [34],
the retinal vasculature [35], and neuronal outgrowth [361. The last example
is particularly intriguing since if evolution chose DLA as the morphology for
the nerve cell (Fig. 3), then perhaps we can understand "why" this choice was
made. What evolutionary advantage does a DLA morphology convey? Can we
use the answer to this question to better design the next generation of com-
puters? These are important issues that we hope to address between this and
the next Bar-Ilan conference, but already we appreciate that a fractal object is
the most efficient way to obtain a great deal of intercell "connectivity" with a
minimum of "cell volume", so the next question is "which" fractal did evolution
select, and why?

We will save time and space by resisting the temptation at this point to
"pull out the family photo album" to show lots of all these various realizations.
Instead, we may refer the interested reader (and their non-specialist colleagues)
to the forthcoming Album of Fractal Forms [37].

B. Answer Two: "Understanding DLA Growth is a Theoretical
Challenge"

As with many models in statistical mechanics, the theoretical challenge is as
important as the experimental realizations in "hooking" theorists. And as with
many statistical mechanical models, the "defining rule" in DLA is simple even
though the "consequences of that rule" are extremely rich. Understanding how
such a rich consequence can follow from such a simple rule is indeed an irre-
sistible challenge.

In the case of DLA, this challenge is enhanced by the fact that-unlike
other models with simple rules (such as the Ising model)- in DLA there is
no Boltzmann factor so we can more easily explain and understand since one
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does not have to know any physics beforehand. Indeed, it initially surprises
almost everyone who sees DLA develop in real time on a computer screen that
a complex outcome (at the global level of a "form") seems to bear no obvious
relation to the details of the simple local rule that produced this form.

There is even the philosophical challenge of understanding how it is that
even though no two DLA's are identical (in the same sense that we can say no
two snowflakes are identical), nonetheless every DLA that we are likely to ever
see has a generic "form" that even a child can recognize (in the same sense that
almost every snowflake that we are likely to see has a generic form that every
child recognizes).

A second somewhat "philosophical" point is the following. If we understand
the essential physics of an extremely robust model, such as the Ising model,
then we say that we understand the essential physics of the complex materials
that fall into the universality class described by the Ising model. In fact, by un-
derstanding the pure Ising model, we can even understand most of the features
of variants of the Ising model (such as the XY or Heisenberg models) that may
be appropriate for describing even more complex materials. Similarly, we feel
that if we can understand DLA, then we are well on our way to understanding
variants of DLA-such as DLA grown on a lattice ("DLA with anisotropy")
or DLA grown using the noise reduction algoritm [38]. And just as the Ising
model is a paradigm for all systems composed of interacting subunits, so also
DLA may be a paradigm for all kinetic growth models.

So with these ambitious goals, we now proceed to consider the third ques-
tion.

4. Third Question: "What Do We Actually Do?"

A. Fractal Dimension: Straightforward to Calculate, but Fruitless

Until relatively recently, most of the theoretical attention paid to DLA has
focussed on its fractal properties [39-40]. One definition of the fractal dimension
df is by the "window box scaling" operation:

(1) First place an imaginary window box of edge L around an arbitrarily-
chosen occupied DLA site ("local origin").

(2) Then count the number of occupied pixels M(L) within that window box.

(3) Next choose many different local origins to obtain good statistics.

(4) Finally, make a log-log plot of M(L) vs. L, and 'interpret the fractal di-
mension df as the "asymptotic" (L -- oo) slope of this plot.

Conventionally, we write
M(L) , Ld, (3)

where the tilde denotes "asymptotically equal to."
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The difficulty of extrapolating from finite L to infinite L has motivated
ever more clever algorithms for generating ever larger DLA clusters. Most of
the world records are held by P. Meakin and his collaborators [39]:

ax 12 x 106 [square lattice DLA]
M'M~ 106 [off-lattice DLA] (4)

The corresponding estimates for df are roughly [39]

df 1.55 [square lattice DLA] (5)d 1.715 ± 0.004 [off-lattice DLA]

The result for square lattice DLA is based on theoretical arguments [39], for
the simulations themselves are not conclusive in that the estimate of df sim-
ply decreases slowly with increasing cluster mass. Equation (5) suggests that
"anisotropic DLA" (DLA grown on a lattice) is in a different universality class;
the calculations discussed below are for small mass (M < 2600) for which the
influence of the lattice anisotropy is (hopefully!) negligible. We can actually
"see with our eyes" that df L 1.7 by means of a simple hands-on demonstra-
tion. We begin with a large DLA cluster (Fig. 2). Suppose we take a sequence of
boxes with L = 1, 10,100 (in units of the pixel size), and estimate the fraction
of the box that is occupied by the DLA. This fraction is called the density,

p(L) M(L)/Ld, (6)

where d = 2 here. Combining (3) and (6), we find

p(L) Ldd. (7)

Now (7) is equivalent to the functional equation [40]

p(AL) = d -dp(L). (8)

Carrying out this operation on Fig. 2 with A = 10 will reveal (Fig. 4)

,11 L=I

p(L)' 1/2 L 10 (9)

1/4 L 100

Here the result of (9),

p(10L) ~ p(L)

convinces one that I0d - 2 t 1/2. So

1
dj - 2 5 log1 0 1 = -0.301, (10a)

leading to
d! - 1.70. (10b)

Although we now have estimates of df that are accurate to roughly 1%,
we lack any way to interpret this estimate. This is in contrast to both the
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2

(a) 1 10 ,00 M
L

Fig. 4. Schematic illustration of the results of a hands-on experiment to actually see (a) that
DLA is indeed a fractal since the density decreases linearly with the size L of the observation
window (or inverse wave vector q-1), and (b) that the fractal dimension is given by roughly
d! - d = lol o ' - -0.301.

d = 2 Ising model and d = 2 percolation, where we can calculate the various
exponents and interpret them in terms of scaling powers [40]. Thus [40, 41]

15
Yh = T yT = 1 [Ising model], (11a)

and [411
91 3an = df = 9, lIT = dred = 3 [percolation], (11b)

48 4
where ded is the fractal dimension of the singly-connected "red" bonds of the
incipient infinite cluster[41].

B. Multifractal Approaches: Complex but Fruitful

Multifractal approaches in statistical physics have a rich history [24], and were
first introduced for describing DLA in 1985 by Meakin and collaborators [18].
The key idea is to focus on the set of growth probabilities {pi } and how their
distribution function D(pi) changes as the cluster mass M increases. The basic
reason why this approach i fruitful is that the {pi} contains almost the maxi-
mum information we can possibly obtain about the dynamics of the growth of
DLA. Indeed, specifying the {pi) is analogous to specifying the four "growth"
probabilities pi = 1/4 [i = 1... 4] for a random walker on a square lattice.

The set of numbers {p,} may be used to construct a histogram D(Inpi)
shown schematically in Fig. 5. This distribution function can be described by
its moment, or simply by its minimum and maximum.
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Fig. S. Schematic behavior of the histogram giving the number Tq(Inpi) of growth sites with
Inpi in the interval [lnpi,lnpi + 6Inpi].

C. Moments of the Distribution Function

The moments of V(ln pi) are determined by

Zp = ZD(Inp)e 'a ), (12a)
InP

or, equivalently,

Z# Pi (126)

The form (12a) as well as the notation used suggests that we think of # as an
inverse temperature, - in p/In L as an energy, and Zp as a partition function
Accordingly, it is customary to define a "free energy" F(6) by the relation

Zp -L (13a)

or, equivalently,
logZp (13b)
logL

In the literature there exist other symbols, and a brief dictionary is presented
in Table 1.

Table 1. Comparison of notation of this paper and other notation in use. Adapted from Ref. [2]

q F(,) 4- '(q)
aS(E) fA&)

What to do with this thermodynamic formalism? One approach that we
have found to be particularly revealing is the analog for DLA of the successive
approximation ("series expansion") approach pioneered by Professor Domb and
his collaborators. In fact a Boston University graduate student, J. Lee, recently
extended renormalization ideas of Nagatani [43] to actually obtain exact results
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for a L x L cell for a sequence of values of L up to and including L = 5. This
work is described elsewhere [2], so we focus on one key result-the apparent
singularity in the quantity

C() -- (14)

Figure 6, which shows C(O) for a sequence of L values, is reminiscent of the
famous finite-size-scaling plot of CH() for the L x L Ising model made by one
of Professor Domb's former students, Michael Fisher [44]. Lee interpreted the
maximum in C(6) as heralding the existence of a singularity in C(6) at some
critical value ,& (Fig. 7).

6 '" -2x2
.... 3x3

S -.- 4x4
", --

* 11

r •

-- 5X

-4 -2 0 2 4

Fig. 6. Analog of Fisher/Ferdinand plot for DLA. Shown is the dependence on of 52 F/0892 ,

where F- -log Z/lIogL and Z=_ ~p~P From Ref. [2].

F(13) does not F(13) converges

2-)

Fig. ?. Shemtic illustration of the phase diagram for DLA as a function of the ucontrol

parameter" 0.

What is the origin of this phase transition, if indeed such a phase transition
exists? This question was addressed by Blumenfeld and Aharony (BA) [3]. BA
considered the behavior of pj. (the smallest of all the growth probabilities
{pi}) for a typical DLA cluster. BA made the A.satz that

Pma, e' - A M R, [BA Anuatz] (15)

BA noted that (15) implies that there is a phase transition, with =0, since
for all negative P, the moments Z# will be dominated by the smallest value of
P
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Fig. 8. "Aharony plot" for the dependenice of Pmim on cluster size (see text). Prom Rd. [8].

Z' = (p 2 9 _ A-P. [M -.+ c] (16)

Since an exponential is not a power law,

e- PA M * 5 M - F (P )/dt,  (17)

it follows that the free energy of (13) is not defined for P < 0.
It is not difficult to construct DLA configurations for which the BA Ansatz

is valid. For example, if a DLA has a tunnel with depth NT, then the only way
a random walker can reach the end of the tunnel is to make a "correct" choice
at each site. For a square lattice, a "correct step" will occur with probability
1/4, so

PM, (- ) -exp(-NT ln 4). (18)

Hence (16) is confirmed, since we expect for those configurations with the
longest tunnel lengths that NT - Ma (e.g., for those DLA configurations
shaped like a spiral galaxy, we expect NT - L2 _~ M /d").

Recently we decided to search for numerical evidence to test the BA Anstz
[8]. To this end, S. Schwarzer and J. Lee calculated the {p,} for approximately
200 DLA dusters of mass about 2600 [8]. This is more than an order of magni-
tude larger than the size of clusters for which others had evaluated {p,} accu-
rately [19]. The reason for the improvement is that Schwarzer and Lee used an
exact enumeration approach [45] whereby one calculates exactly the probability
that a random walker is at position r at time t given its probabilities to be at
the neighbor sites of r at time t - 1.

To test for the form (15), one must plot pQ = exp(Inpj.) (which we shall
henceforth denote simply PmI. against M on log-log paper. We found [Fig. 8]
that the data are linear for roughly a decade of mass (260 .< M < 2600).
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Enter Brooks Harris. Harris [7] noted that such "tunnel configurations"
might be sufficiently rare that they do not make a memorable contribution the
quenched average p. Accordingly, Harris proposed that

pmin(L) - M - *. [Harris Ansatz] (19)

The Harris Ansatz is supported by a simple deterministic fractal model DLA
proposed by Mandelbrot and Vicsek [4]. Equation (16) is replaced by

z ~ ~ M p (20)

so there is no phase transition. To test the Harris Ansatz (19), we plot pQ
against M on log-log paper and find [Fig. 9] that the data are just as linear as
for the BA plot-for roughly the same decade in mass (260 < M < 2600).

40

30

A 0

20

0 10V 0 7

10 0 4

0o 0010 o, lop 1041 *

CN
10'' t 2  o 1o2 IOD

0o0 lop to, to,
III

Fig. 9. "Harris plot" for the dependence of Pmi. on cluster size (see text). From Ref. [8].

So what is going on? Is the decay exponential (as proposed by BA) or is it
power law (as proposed by Harris)? To answer this question, we show in Figs. 8,
9 the successive slopes of both the BA and Harris plots and note that these
quantities decrease in the former case and increase in the latter case. This fact
strongly suggests that at large mass,

logM < log p.i. < MI. (21)

More significantly, we note that for the Harris plot the slopes increase approx-
imately linearly with log M,

alv th (logdpie .) (log M). (22a)

Even a physicist can solve the differential equation (22a),
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Fig. 10. Plot in the form suggested by linear increase in the successive slopes of the Harris
plot of Fig. 9. From Ref. [8].

log Pmin _ (log M) 2 , (22b)

suggesting that we plot log pin against (log M)2 . We find linearity over fully
two decades, for 26 < M < 2600 [Fig. 10), instead of the linearity over only
one decade found when testing the BA and Harris assumptions.

D. The Void-Channel Model of DLA Growth

Does the numerical result (22b) provide any clues for the underlying puzzle of
DLA? We suspect the answer to this question is "yes", and we have proposed
a "void-channel" model of DLA [8,9] in order to explain the result (22b). The
void-channel model states that each fjord is characterized by a hierarchy of
voids separated from each other by narrow "channels" or "gateways." The key
feature of the model are:

(1) The voids must be self-similar, i.e., their characteristic linear dimension
must increase with the same exponent. Thus

Lvoid 1 i/d,. (23)

To see this, we assume the contrary: if (23) does not hold, then DLA will
not be a fractal!

(2) The voids are separated by channels or gateways: a random walker can
pass form one void to the next only by passing through a gateway. If the
diameter of a gateway also scales as Mild' , then we would expect that
p,,j. is given by the Harris Ansatz. Since the numerics do not support the
Harris Ansatz, we conclude that [8,9]

LchaaMel - MI. [7t < 1/df] (24)
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Fig. 11. Off-lattice DLA cluster of 105 sites indicating some of the channels that serve to
delineate voids. Courtesy of P. Meakin.

What is the evidence supporting the void-channel model of DLA growth
dynamics?
(1) First, we note that if channels "dominate", then the BA Ansatz would

have to be satisfied. The numerics rule this out.

(2) Second, we note that if self-similar voids dominate, then the Harris Ansatz
would have to be satisfied. Again, the numerics rule this out.

(3) Photos of large DLA clusters reveal the presence of such voids and channels
[Fig. 11]. Moreover, when the DLA mass is doubled, we find that outer
branches "grow together" to form new channels (enclosing larger and larger
voids).

(4) The void-channel model can be solved [8,9] under the approximation that
the voids are strictly self-similar and the gates obey (24). The solution
demonstrates that log pi oC (log M)2 .

(5) The void-channel model is consistent with a recent calculation [46] sug-
gesting that DLA structures can be partitioned into two zones:
(a) An inner finihed zone, typically with r _< Rg (where R. is the radius

of gyration), for which the growth is essentially "finished" in the sense
that it is overwhelmingly improbable that future growth will take place.

(b) An outer unfinished zone (typically r > R.) in which the growth is
unfinished.

Thus future growth will almost certainly take place in the region r > R9.
Now 2R. f tL, where L is the spanning diameter. Hence only about 1/4 the
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total "projected area" of DLA is finished, the rest of the DLA being unfinished.
We suggest that the finished region will be created from the unfinished region
by tips in the unfinished region growing into juxtaposition (thereby forming
voids).

It remains to demonstrate numerically that real DLA is characterized by a
hierarchy of self-similar voids separated by channels whose width scales with
a power of L smaller than L1/df. Such a numerical calculation is underway,
using a hierarchy of off-lattice DLA clusters studied for a sequence of masses
M = 2526,..., 220. Although final numerical results are not available at the
time of this talk, we do have visual evidence that outer tips widely separated
for mass Mo later grow together as the cluster size doubles and quadruples.
Indeed, such behavior is expected since the growth of DLA is fixed by the
growth probabilities, which are of course largest on the tips.

Two tips will grow closer and closer until their growth probabilities become
so small that no further narrowing will occur. This observed phenomenon can
be perhaps better understood if one notes that the growth probabilities {pi} of
a given DLA cluster are identical to normalized values of the electric field {Ei}
on the surface of a charged conductor whose shape is identical to the given
DLA cluster. Thus as two arms of the DLA "conductor" grow closer to each
other, the electric field at their surface must become smaller (since Ei oc Voi,
where 0 =- constant on the surface of the conductor). That Ei is smaller for two
arms that are close together can be graphically demonstrated by stretching a
drumhead* with a pair of open scissors.

(1) If the opening is big, the tips of the scissors are well-separated and the
field on the surface is big (we see that the gradient of the altitude of the
drumhead is large between the tips of the scissors).

(2) On the other hand, if the scissor tips are close together, the field is small
(we see that the gradient of the altitude of the drumhead is small between
the scissor tips).

5. Summary

In summary, we have (1) one "firm" numerical result, logpmin _ (log M) 2 ,
given by Eq. (22b). We have also (2) an analytic argument that this behavior
follows from a void-channel model of DLA structure in which there exist self-
similar voids separated by channels whose width does not scale. We have (3)
a plausibility argument that the tips of DLA grow together until they are
separated by a distance which is typically a few pixels, and we have (4) visual
evidence supporting this picture. We are presently working on obtaining firm
numerical evidence to test the void-channel model of DLA growth dynamics.

* A convenient drumhead is obtained by stretching panty hose across a cir-

cular sewing hoop (R. Selinger, private communication)
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9 Appendix: The Domb-Hunter Scaling Hypothesis

DLA is one model system for which the Domb-Hunter constant-gap hypothesis
does not hold. The purpose of this Appendix is to describe the scaling hypoth-
esis in this context, and to enquire if we can develop a deeper understanding of
it from the behavior of DLA. We begin by considering a few simple examples:

e Example 1: Unbiased Random Walk

Consider, e.g., the Bernoulli probability distribution 17(x, t), which gives the
probability that a one-dimensional unbiased random walk is at position x at
time t given that it was at x = 0 at time t = 0,

=7xt ~ (A.1)

This distribution is characterized by its moments,

t

Z,6 (XO) = X,6ff(X,t). (A.2)
z=-t

Hence [471

(x ° ) = 1 - t0  (A.3a)

(x2 ) =t (A.3b)

(x 4 ) = 3t 2 - 2t = 3t 2 1 - ]-W t 2  (A.3c)

(X6 ) = 15t 3 1 - 2 + 16 (A.3d)

These moments have the property that if we write

Z,6 , t - F ( O) ,  (A.4)

then F(9) = /612. The "Domb-Hunter gap"

,A(#) =_ F(f + 1) - F(P3) (A.5a)

is independent of P3,

A = 1/2 [unbiased random walk] (A.5b)

More generally, for a random walk with fractal dimension d,, one can show
that (A.5b) becomes

A = 1/dw [fractal substrate] (A.5c)
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* Example 2: Percolation

A second example is percolation. For an infinite system, Stauffer's scaling hy-
pothesis [42] is well verified:

(a) Right at the the percolation threshold p = Pc, the system is self-similar
on all length scales so the number of s-site clusters per lattice site decreases
with s as a power law,

n,,s -  (A.6)

A remarkable fact is that the critical exponent r controlling this decrease in
the distribution of cluster sizes is directly connected to the fractal dimension
df of the incipient infinite cluster,

Tr = 1 + d/df. (A.7)

(b) Away from pc, the system remains self-similar for length scales less than
the pair connectedness length t. Hence the power law relation (A.6) must hold
for all s smaller than a characteristic cluster size s*, where s* is connected to

through
s, _, Cdf _ .. . I p-,d. (A.8)

For values of s above s*, the system ceases to be self-similar and hence (A.6)
must break down: the long-tail behavior of the power law (associated with
"scale-free" behavior of a self-similar system) must cross over to a function
with an inherent scale. That scale is, of necessity, set by s* itself, so that when
p # p, (A.6) must be replaced by

nf(p) - n,(pc)f(s/s*). (A.9)

The function f(x) is sometimes called a cut-off function because it "cuts off"
the power law of (A.6) above values of x where the system ceases to be self-
similar. For the limit of infinite dimension d, the Cayley tree solution is believed
to be exact and we know the explicit form of f(x),

f(x) , const [z < 1], (A.10a)

and
f(x) - exp(-x 2 )  [X > 1]_ (A.10b)

For a system of edge L at the percolation threshold p = pc, the basic
quantity n.(p) is replaced by n.(L) - N.(L)/L ", where N.(L) is the number
of clusters of a sites. On length scales much less than L, the system must be
self-similar. Hence the analog of (A.9) is

n8 (L) - n.(L = oo)g(s/s*) (A.11)

where n.(L = oo) - s - ' and now s* - Ld,. We say that the cluster size
distribution is scale-free for cluster sizes smaller than s* since on small length
scales the system cannot "know" that it is finite.
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The analog of (A.2) is

00 00

- (S ) = j sP1I1(L)=Esf'n,(L). (A.12)
s=1 a=1

since the probability that an arbitrarily chosen site belongs to an s-site cluster
is given by 11,(L) - sn,(L). The scaling properties of the moments of this
distribution then follow by dimensional analysis, since n. has the dimensions
of s - ' - L - ,df and T = 1 + d/df. Thus

Z-1 (s-1) - s-IT,(L) = n,(L) - L - d (A.13a)
I I

Zo (s) - E ,(L)- E sn(L) ,- L(ddI) (A.13b)
8 a

Z (1) - s'2(L) = S2n(L) L-(d-2df) (A.13c)
S 8

Since F(f3) is defined by (13), we have

F(-1) =d (A.14a)

F(O) = (d - df) (A.14b)

F(1) = (d - 2df) (A.14c)

We see from (A.14) that the family of "Domb-Hunter gap exponents"A(/3)
F(/3 + 1) - F(f3) collapses to a single value,

A = -df. [percolation] (A.14d)

Comparing (A.14d) with (A.5b) we see that percolation has the same simplify-
ing feature which we found for the case of the simple random walk, namely the
Domb-Hunter gap exponents are constant. Hence one needs to know only one
exponent and the value of the gap exponent to determine all the exponents of
the system.

That the Domb-Hunter formulation of scaling leads to the scaling equali-
ties among the critical exponents for thermodynamics is demonstrated quite
clearly in the original Domb-Hunger paper[I]. Here we demonstrate that fact
for percolation by deriving the Rushbrooke equality

a + 2 + y-2 (A.15)

relating the critical exponents 2 - a for the total number of clusters [Z-1
of Eq. (A.13a)], f (not to be confused with the f appearing in the moment
expressions) for the fraction of sites belonging to a finite cluster [Z. of (A.13b)],
and -y for the average size of a finite cluster (Z1 of (A.13c)]. From the definition
(A.12) it follows that
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F(-1) =- (A.16a)
V

F(O) = /v (A.16b)

F(1) = -y/v (A.16c)

so that

2-a
A(-1) =/3/v - (A.17a)

A(O) = -- Y/v - //v. (A.17b)

From (A.17) we see that the Domb-Hunter hypothesis A(O) = A(1) leads
immediately to the Rushbrooke exponent equality (A.15).

* Example 3: Correlated Spatial Disorder and Random
Multiplicative Process

DLA is a disorderly growth model, just as is invasion percolation. Unlike per-
colation, for DLA there is a strong spatial correlation in the position of the
particles. For DLA, an observation window centered on a "tip site" sees a quite
different structure of growth probabilities than an observation window centered
on a "fjord site." We say that the disorder in DLA is spatially correlated.

Is there a relation between the correlated spatial disorder of DLA and the
breakdown of Dormb-Hunter scaling? To try to answer this question, we now
consider an extremely simple model of correlated spatial disorder, which, al-
though extremely simple, differs fundamentally from other models of spatial
disorder which generally take the spatial order to be random (e.g., by intro-
ducing random bias fields which alternate from point to point in the system).
To study physical properties such as transport, most previous work has been
based on variations of the classic percolation model in which the disordered
material is treated as an uncorrelated network of random bonds (e.g, resistors)
that are either open or blocked (finite or infinite resistivity). Thus the spatial
disorder is assumed to be completely uncorrelated. However in many real disor-
dered materials, such as polymers, porous materials, and amorphous systems,
the spatial disorder is correlated. For example, if we model the permeability of
a porous rock by an array of resistors whose resistances are chosen randomly,
then it is possible to find huge resistances neighboring tiny resistances. Such
configurations cannot occur in nature since the permeability of a "crack," while
random, cannot fluctuate arbitrarily. The spatial disorder is correlated.

Reference [48] introduces a topologically one-dimensional model that en-
compasses the essential physics of correlated spatial disorder but is simple
enough to be treated analytically. Consider a set of N resistors in series, where
the resistance Rj of resistor j changes in a correlated fashion,

Ri+ I =- (1 + e)jRi. (A.18)
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f I I

R: ! 2 2 2 I 2 I 2 4 8 4 8

r. -I -I +1 +1 *1 -I +1 +1 +1 -I +1 +1

Fig. 12. A realization of the one-dimensional model for correlated spatial disorder (from Ref.
[48])

Here e > 0 is arbitrary, and rT is chosen randomly to be +1 or -1 (see Fig. 12).
Because neighboring resistors may only differ by a factor of (1 + e), this model

insures a smooth spatial variation of the resistance.
If e = 2, then we have a simple one-dimensional random resistor network

in which each resistance in the chain is either twice the preceding resistance

or half the preceding resistance [48]. If we begin the chain with a unit resistor

Ro = 1, then we choose the next resistor R1 to be R1 = 2 with probability

1/2 or R, = 1/2 with probability 1/2. There are dearly 2 N configurations of a

chain of N + 1 resistors.
One question of interest is the distribution for RN, the resistance of resistor

N. Clearly

(RN)mx - 2 N (A.19a)

and

(RN)min = ( 1 / 2 )N (A.19b)

Moreover the distribution V(RN) is quite asymmetric (like Fig. 5), since it has

a maximum at the most probable value of RN-which is unity-and a long
tail extending to (RN)m.z = 2 N . Corresponding to this long tail is a set of

moments that do not satisfy Domb-Hunter constant-gap scaling, since there
are configurations with large values of RN which dominate the moment sum.

To make this explicit, note that for the first moment we have on summing on
all 2 N configurations,

Z - [RN(c)] P(c) = (5 / 4 )N, (A.20a)
2NC

while for the second moment

Z2- E [RN(c)] 2 P(c) = (1 7 / 8 )N. (A.20b)
2Nc

Here P(c) is the probability of each of the 2 N configurations c, and RN(C) is
the value of resistor N in configuration c. Since (1 7/ 8 )N is much larger than
(5 / 4 )2N - (2 5 / 16 )N, we see that Z 2 >> (Z 1 )2 .

Are multifractal phenomena associated with systems where the underlying

physics is governed by a random multiplicative process? Certainly there are

no multifractal phenomena associated with simple random additive processes
(such as the sum of 8 numbers, each number being chosen to be either a -1 or
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Fig. 13. (a) The results of a computer simulation of a random multiplicative process in
which a string of 8 numbers is multiplied together, and each number is chosen with equal
probability to be either 2 or 1/2. The limiting or asymptotic value of the product is (5/4)8 =
3.47. However the simulations do not give this value unless the number of realizations IZ
is approximately the same as the total number of configurations of this product, 2s = 256.
This simulation was provided by R. Selinger. (b) Estimation of F(P8 = -5, L = 4) obtained
by random sampling for DLA grown in a 4x4 cell. The dashed lines are the exact value for
L = 4. The running average shows 'jumps', and become close to the exact value after the
number of samples is the same order of magnitude as the total number of configurations
(259 in this case). This discontinuous jumps arise from the samples which give the dominant
contribution to F(5, L), but are very rare. From Ref. [2].

a +1-which has a geometrical interpretation as an 8-step random walk on a
one-dimensional lattice).

To answer this question, consider a simple random multiplicative processes
in which we form the product of 8 numbers, each number randomly chosen to
be either a 1/2 or a 2 [491. The results of simulations of such a process are
shown in Fig. 13. The y-rois is the value of the product after IR realizations,
and the z-axis is the number of realizations R. In total there are 28 = 256
possible configurations of such random products. Normally, random sampling
procedures give approximately correct answers when only a small fraction of
the possible 256 configurations has been realized. Here, however, one sees from
Fig. 13 that the correct asymptotic value of the product is attained only af-
ter approximately 256 realizations [24]. Monte Carlo sampling of only a small
fraction of the 256 configurations is doomed to failure because of the 256 con-
figurations, a rare few (consisting of, say, all 2's or seven 2's and a single 1)
bias the average significantly and give rise to the upward steps in the running
average shown in Fig. 13.

A simple random multiplicative process that gives rise to multifractal phe-
nomena is found in the simple hierarchical model of the percolation backbone
[50]. If the potential drop across the singly connected links is V and that
across the multiply-connected links is V2 , then we see that when this structure
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is iterated the potential drops across each of the bonds are products of the
potential drops of the original structure. The reader can readily demonstrate
that for this hierarchical structure Z(/3) = (V6 + V6)N, where N is the num-
ber of iterations carried out [50]. It turns out that Z(/f) obeys a power law
relation of the form of (13), with an infinite hierarchy of exponents given by

F(3) = 1 + log V. + V1 /log 2. In order to obtain this result, one must use

the relation Nred L3/4 , where Nred is the number of singly-connected "red"
bonds [42].
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Rio de Janeiro, 31 July - 4 August 1989.
(31) Invited Talk, Ninth International Conference on Crystal Growth, Sendai, Japan 20-25

August 1989.
(32) Invited Talk, Fractals in Physics: In Honor of the 65th Birthday of Professor Benoit

Mandelbrot, Nice, France, 1-4 October 1989.
(33) Invited Talk, International Conference on Frontiers in Condensed Matter Physics, Bar

Ilan University, Israel, 8-11 January 1990.
(34) Invited Talk, Physics, Chemistry and Materials Science of Clusters, Lake Arrowhead,

California, 21-23 January 1990.
(35) Invited Talk, FASEB Meeting, Washington, DC, 1 April 1990.
(36) Keynote Address, MECO-17 (17th Conference of the Middle-European Cooperation in

Statistical Physics), Balatonfiured, Hungary, 22-25 April 1990.
(37) Invited Talk, Venture Research Conference, London, UK, 25-27 June 1990.
(38) Invited Talk, NATO Advanced Study Institute on Propagation of Correlations in Con-

strained Systems, Cargse, France, 2-14 July 1990.
(39) Invited Talk, Complexity in Physics: Entering the 21st Century, Stockholm, Sweden, 3-8

September 1990.
(40) Opening Talk, Random Materials &1 Processes, University of West Indies, 18-23 December

1990.

BOOKS PUBLISHED DURING THE GRANT PERIOD

1. H. E. Stanley and N. Ostrowsky, Eds. Random Fluctuations and Pattern Growth: Experiments
& Theory (Proceedings 1988 Cargse NATO ASI Series E: Applied Sciences, Vol 157). Kluwer
Academic Publishers, Dordrecht, 1988.

2. H. E. Stanley and N. Ostrowsky, eds., Correlations and Connectivity: Geometric Aspects of
Physics, Chemistry and Biology (Kluwer, Dordrecht, 1990). [PROC. 1990 NATO ADVANCED STUDY
INSTITUTE.]

3. D. Stauffer and H. E. Stanley., From Newton to Mandelbrot: A Primer in Theoretical Physics
(Springer-Verlag, Heidelberg & New York, 1990).

BOOK CHAPTERS, PUBLICATIONS, AND CONF. PROC. DURING THE GRANT PERIOD

4. A. Bunde, S. Miyazima, and H. E. Stanley, "A growth model with a finite lifetime of growth
sites: From the Eden model to the kinetic growth walk" J. Stat. Phys. 47, 1-16 (1987).

5. A. Coniglio, N. Jan, I. Majid and H. E. Stanley, "New model embodying the physical mech-
anism of the coil-globule transition at the theta point of a linear polymer" Phys. Rev. B 35,
3617-3620 (1987).

6. J. Nittmann, H. E. Stanley, E. Touboul, and G. Daccord, "Experimental Evidence for Multi-
fractality," Phys. Rev. Lett. 58, 619 (1987).

7. J. Nittmann and H. E. Stanley, "Non-Deterministic Approach to Anisotropic Growth Patterns
with Continuously-Tunable Morphology: The Fractal Properties of Some Real Snowflakes," J.
Phys. A 20, L1185 (1987).

8. H. E. Stanley, D. Stauffer, J. Kert~sz and H. J. Herrmann, "Dynamics of Spreading Phenomena
in Cooperative Models," Phys. Rev. Lett. 2326-2328 (1987).
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9. D. Markovik, S. Milo~evi6, and H. E. Stanley, "Self-Avoiding Walks on Random Networks of
Resistors and Diodes" Physica A 144, 1-16 (1987).

10. S. Miyazima and H. E. Stanley, "Intersection of Two Fractal Objects: Useful Method of Esti-
mating the Fractal Dimension," Phys. Rev. B (Rapid Comm.) 35, 8898 (1987).

11. H. E. Stanley and S. Havlin, "Generalization of the Sinai Anomalous Diffusion Law," J. Phys.
A 20, L615-L618 (1987).

12. P. Devillaxd and H. E. Stanley, "First-order branching in diffusiun-limited aggregation," Phys. Rev. A
36, 5359 (1987).

13. Z. V. Djordjevic and H. E. Stanley, "Scaling properties of the perimeter distribution for lattice
animals, percolation and compact clusters," J. Phys. A 20, L587-L594 (1987).

14. J. Nittmann and H. E. Stanley, "Role of Fluctuations in Viscous Fingering and Dendritic
Crystal Growth: A Noise-Driven Model with Non-Periodic Sidebranching and No Threshold
for Onset" J. Phys. A 20, L981-L986 (1987).

15. A. Bunde, S. Miyazima, and H. E. Stanley, "From the Eden model to the kinetic growth walk:
A generalized growth model with a finite lifetime of growth sites" J. Stat. Phys. 47, 1-16
(1987).

16. P. Poole, A. Conigio, N. Jan, and H. E. Stanley, "Universality Classes for the 0 and 0' Points"
Phys. Rev. Lett. 60, 1203 (1988).

17. P. Alstrom, D. Stassinopoulos and H. E. Stanley, "'Thermodynamical Formalism' for an Infinite
Hierarchy of Fractal Resistor Networks" Physica A 153 20-46 (1988).

18. T. Stogid, B Stogid, S. Milogevi6 and H. E. Stanley, "Crossover from Fractal Lattice to Eu-
clidean L ttice for the Residual Entropy of an Ising Antiferromagnet in Maximum Critical
Field H,," Phys. Rev. A 37 1747-1753 (1988).

19. A. Aharony, R. J. Birgeneau, A. Coniglio, M. A. Kastner and H. E. Stanley, "Magnetic Phase
Diagram and Magnetic Pairing in Doped La 2CuO4 ," Phys. Rev. Lett. 60, 1330 (1988).

20. A. Aharony, R. J. Birgeneau, A. Coniglio, M. A. Kastner and H. E. Stanley, "Magnetic Phases
and Possible Magnetic Pairing in Doped Lanthanum Cuprate," Physica C 153-155, 1211
(1988).

21. A. Bunde, S. Havlin, H. E. Roman, G. Schildt and H. E. Stanley, "On the Field Dependence
of Random Walks in the Presence of Random Fields," J. Stat. Phys. 50, 127 (1988).

22. E. Koscielny-Bunde, A. Bunde, S. Havlin, and H. E. Stanley, "Diffusion in the Presence of
Random Fields and Transition Rates: Effect of the Hard Core Interaction," Phys. Rev. A 37,
1821-1823 (1988).

23. S. Milogevi6, D. Stassinopoulos, and H. E. Stanley, "Asymptotic Form of the Spectral Dimen-
sion at the Fractal to Lattice Crossover" J. Phys. A 21 1477-1482 (1988).

24. S. Havlin, R. Selinger, M. Schwartz, H.E. Stanley and A. Bunde "Random multiplicative
processes and transport in structures with correlated spatial disorder", Phys. Rev. Letters 61,
1438 (1988).

25. S. Miyazima, Y. Hasegawa, A. Bunde and H. E. Stanley, "Generalized Diffusion-Limited Aggre-
f ation Where Aggregate Sites have a Finite Radical Time," J. Phys. Soc. Japan 57, 3376-3380

988).
26. T. Stoli6, B. Stogi6, S. Milogevi6 and H. E. Stanley, "Crossover from Fractal Lattice to Eu-

clidean Lattice for the Residual Entropy of an Ising Antiferromagnet in Maximum Critical
Field He," Phys. Rev. A 37 1747-1753 (1988).

27. J. Lee and H. E. Stanley "Phase Transition in the Multifractal Spectrum of Diffusion-Limited
Aggregation," Phys. Rev. Lett. 61, 2945-2948 (1988).

28. P. Devillard and H. E. Stanley, "Roughening for Diffusion Limited Aggregation with Walkers
Having a Finite Lifetime"Phys. Rev. A 38, 6451 (1988).

29. H. J. Herrmann and H. E. Stanley, "The fractal dimension of the minimum path in two- and
three-dimensional percolation" J. Phys. A 21 L829-L833 (1988).

30. C. Amitrano, P. Meakin, and H. E. Stanley, "Fractal Dimension of the Accessible Perimeter
of Diffusion-Limited-Aggregation" Phys. Rev. A 40, 1713-1716 (1989).
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31. E. Arian, P. Alstrom, A. Aharony, and H. E. Stanley, "Crossover Scaling from Multifractal
Theory: Dielectric Breakdown with Cutoffs," Phys. Rev. Lett. 63, 2005 (1989).

32. A. Coniglio and H. E. Stanley, "Dilute Annealed Magnetism and High-Temperature Supercon-
ductivity," Physica C 161, 88-90 (1989).

33. P. Devillard and H. E. Stanley, "Scaling Properties of Eden Clusters in Three and Four Di-
mensions," Physica A 160, 298-309 (1989).

34. A. D. Fowler, H. E. Stanley and G. Daccord, "Disequilibrium Silicate Mineral Textures: Fractal
and Non-Fractal Features," Nature 341, 134-138 (1989).

35. S. Havlin, M. Schwartz, R. Blumberg Selinger, A. Bunde, and H. E. Stanley, "Universality
Classes for Diffusion in the Presence of Correlated Spatial Disorder" Phys. Rev. A 40, 1717-
1719 (1989).

36. G. Huber, P. Alstrom, and H. E. Stanley, "Number of Scaling Factors in Incommensurate
Systems," J. Phys. A 22, L279-L285 (1989).

37. J. Lee and H. E. Stanley, "Phase Transition in Diffusion-Limited Aggregations: Lee and Stanley
Reply," Phys. Rev. Lett. 63, 1190 (1989).

38. J. Lee, P. Alstrom, and H. E. Stanley "An Exact Enumeration Approach to Multifractal
Structure for Diffusion Limited Aggregation," Phys. Rev. A 39, 6545-6556 (1989).

39. J. Lee, P. Alstrom, and H. E. Stanley, "Scaling of the Minimum Growth Probability for the
'Typical' DLA Configuration," Phys. Rev. Lett. 62, 3013 (19 June 1989).

40. P. Poole, A. Conigio, N. Jan, and H. E. Staney, "What is the Shape of a Polymer Chain near
the Theta Point?" Phys. Rev. A 39, 495 (1989).

41. F. Sciortino, P. Poole, H.E.Stanley and S. Havlin, "Lifetime of the Hydrogen Bond Network
and Gel-Like Anomalies in Supercooled Water", Phys. Rev. Letters 64, 1686-1689 (1990).

42. R. B. Selinger, S. Havlin, F. Leyvraz, M. Schwartz, and H. E. Stanley, "Diffusion in the
Presence of Quenched Random Bias Fields: A Two-Dimensional Generalization of the Sinai
Model," Phys. Rev. A 40, 6755-6758 (1989).

43. R. B. Selinger, J. Nittmann, and H. E. Stanley, "Inhomogeneous Diffusion-L Imited Aggrega-
tion," Phys. Rev. A 40, 2590-2601 (1989).

44. H. E. Stanley, "Learning Concepts of Fractals & Probability by 'Doing Science'" Physica D
38, 330-340 (1989).

45. B. Sto~i and H. E. Stanley, "Low Temperature Impurity Pairing in the Frustrated 2d Ising
Model," Physica A 160, 148-156 (1989).

46. R. J. Vasconcelos dos Santos, I. P. Fittipaldi, P. Alstrom and H. E. Stanley, "Exact Results
for Randomly Decorated Magnetic Frustrated Models of Planar CuO 2 Systems," Phys. Rev.
B 40, 4527-4531 (1989).

47. P. Alstrom, D. Stassinopoulos and H. E. Stanley, "Images and Distributions Obtained from
Affine Transformations," Phys. Rev. A 41, 5290 (1990).

48. J. Lee, P. Alstrom, and H. E. Stanley, "Is There a Phase Transition in the Multifractal Spectrum
of DLA?" in Fractals: Physical Origin and Properties, L. Pietronero, ed. (Plenum Publishing
Co., London, 1990). [INVITED TALK, ERICE.]

49. H. E. Stanley, "Role of Fluctuations in Fluid Mechanics and Dendritic Solidification," Physica
A 163, 334-358 (1990). [INVITED TALK, STATPHYS 17.]

50. H. E. Stanley, A. Bunde, S. Havlin, J. Lee, E. Roman, and S. Schwarzer, "Dynamic Mechanisms
of Disorderly Growth: Recent Approaches to Understanding Diffusion Limited Aggregation,"
Physica A 168, 23-48 (1990). (INVITED TALK, INTERNATIONAL CONFERENCE ON FRONTIERS IN
CONDENSED MATTER PHYSICS.]

51. A. Coniglio, "Correlations in Thermal and Geometrical Systems," in Correlations and Con-
nectivity: Geometric Aspects of Physics, Chemistry and Biology [NATO ASI SERIES VOL. 188), edS.
H. E. Stanley and N. Ostrowsky (Kluwer, Dordrecht, 190-P

52. P. Alstrom and F. Sciortino, "Dynamics of Bonded Networks with Two Energy Scales," Phys.
Rev. Lett. 65, 2885 (1990).
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53. P. Alstrom, P. Trunfio, and H. E. Stanley, "Spatic-Temporal Fluctuations in Growth Phe-
nomena: Dynamical Phases and 1/f Noise," Phys. Rev. A Rapid Communications 41, 3403
(1990).

54. F. Caserta, H. E. Stanley, W. Eldred, G. Daccord, R. Hausman, and J. Nittmann, "Physical
Mechanisms Underlying Neurite Outgrowth: A Quantitative Analysis of Neuronal Shape,"
Phys. Rev. Lett. 64, 95-98 (1990).

55. P. Devillard and H. E. Stanley, "Exact Enumeration Approach to the Directed Polymer Prob-
lem," Phys. Rev. A 41, 2942-2951 (1990).

56. J. Lee, A. Coniglio, and H. E. Stanley, "Fractal-to-Nonfractal Crossover for Viscous Fingers,"
Phys. Rev. A Rapid Communications 41, 4589-4592 (1990).

57. J. Lee, S. Havlin, H. E. Stanley, and J. E. Kiefer, "Hierarchical Model for the Multifractality
of Diffusion Limited Aggregation," Phys. Rev. A 42, 4832-4837 (1990)

58. T. Nagatani and H. E. Stanley, "Double Crossover Phenomena in Laplacian Growth: Effects
of Sticking Probability and Finite Viscosity Ratio," Phys. Rev. A 41, 3263-3269 (1990).

59. T. Nagatani and H. E. Stanley, "Phase Transition and Crossover in Diffusion-Limited Aggre-
gation with Reaction Times," Phys. Rev. A 42, 3512-3517 (1990).

60. T. Nagatani and H. E. Stanley, "Crossover and Thermodynamic Representation in the Ex-
tended q Model for Fractal Growth," Phys. Rev. A 42, 4838-4844 (1990).

61. C.-K. Peng, S. Prakash, H. J. Herrmann, and H. E. Stanley, "Randomness versus Deterministic
Chaos: Effect on Invasion Percolation Clusters," Phys. Rev. A 42, 4537-4542 (1990).

62. S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H. E. Roman, and H. E. Stanley, "Minimum Growth
Probability of Diffusion-Limited Aggregates," Phys. Rev. Lett. 65, 603-606 (1990).

63. F. Sciortino, A. Geiger, and H. E. Stanley, "Isochoric Differpntial Scattering Functions in Liquid
Water: The Fifth Neighbor as a Network Defect," Phys. Rev. Lett. 65, 3452 (1990).

64. F. Sciortino, P. Poole, H. E. Stanley and S. Havlin, "Lifetime of the Hydrogen Bond Network
and Gel-Like Anomalies in Supercooled Water," Phys. Rev. Lett. 64, 1686-1689 (1990).

65. R. L. B. Selinger and H. E. Stanley, "Percolation of Interacting Diffusing Particles," Phys.
Rev. A4f 4845-4852 (1990).

66. H. E. Stanley, P. Poole, A. 'oniglio, and N. Jan, "What is the Shape of a Polymer Chain near
the Theta Point?' Mol. Cryst. & Liquid Crst. 18, 91-92 (1990).

67. D. Stassinopoulos, G. Huber, and P. Alstrom, "Measuring the Onset of Spatio-Temporal In-
termittency," Phys. Rev. Lett. 64, 3007-3010 (1990).
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